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Abstract
The high symmetry of a single-wall nanotube made of a rectangular lattice
sheet rolled up into a cylinder is described by a line group. Such a tube is
characterized by helical symmetry, while it has translational periodicity if the
squares of a rectangular lattice vector are commensurate or if its chiral vector
is orthogonal to a rectangular lattice vector. Possible additional symmetry
elements are consequences of the non-translational symmetries of the layer
(e.g. rotational axis and mirror planes). Except for a two-fold axis, they appear
only if a chiral vector matches specific, rather restrictive, conditions.

1. Introduction

The discovery of carbon nanotubes (CNTs) [1] set off extensive research of their physical
properties and the synthesis of the other kinds of nanotubes (NTs) [2]. One of the generic
qualities of nanotubes is their high symmetry, extensive use of which has helped not only to
interpret certain experimental data but also to predict their fundamental properties [3].

Likewise a single-wall CNT, which can be described as a tube made of a single graphite
layer rolled up into a cylinder, all other kinds of nanotubes can be imagined as a rolled-up layer
(or concentrically rolled-up layers). The underlying lattice of the layers is, in most of the cases
studied previously, hexagonal.

However, there are also nanotubular forms that are rolled up from layers with a
rectangular lattice. Quite recently, the formation of single-crystal nanorings of zinc oxide
by the spontaneous coaxial uniradial and epitaxial self-coiling of a polar nanobelt has been
reported [4]. A polar nanobelt has a rectangular lattice [5] and the symmetry of a nanoring is
actually the symmetry of a cylindrical rectangular lattice. Also, one of the types of carbon
pentaheptites, which has been proved to be unstable against folding [6], has a rectangular
lattice. The same lattice type has been observed in boron nets of the ternary borides ThMoB4

and YCrB4 [7], and predicted numerically for boron nanotubes [8]. In the case of BC2N NTs,
i.e. type II [9] which are characterized by a rectangular lattice, it is possible to switch to a
hexagonal lattice (at the cost of doubling the unit cell) [10] and thus to apply the method of
symmetry analysis originally developed for single-wall CNTs [12]. However, this method is
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generally not applicable to the rectangular lattices and, most likely, the above examples are just
a few among many layered compounds with a rectangular lattice that can form viable tubular
nanostructures. Thus, an ever-increasing number of predicted and already-synthesized forms,
together with the well-known advantages of application of symmetry, motivate this effort to
derive the full symmetry groups of all possible nanotubes with underlying rectangular lattices.

2. Essentials of line groups

Line groups consist of symmetries of structures that are periodic along a single direction. The
periodicity of the line groups is not constricted to translational periodicity, but includes possible
generalizations to regular incommensurate structures. Namely, each line group is a product
L = ZPn of an axial point group Pn (where n is the order of its principle axis) and an infinite
cyclic group of generalized translations Z , which may be either a screw axis TQ( f ) or a glide
plane Tc( f ), generated by (CQ | f ) (where the Koster–Seitz symbol denotes rotation by 2π/Q
around the principal axis, which is conveniently chosen as the z-axis, followed by translation
by f along the same axis) and (σv | f ), respectively.

As none of the factors is subject to crystallographic restrictions, rod groups [13] actually
represent only a few special cases of the line groups: 80 out of an (uncountably) infinite number,
to be precise. Thus, the principle axis n of Pn may be any positive integer and, this way, seven
countably infinite families of axial point groups can be distinguished: Cn , S2n, Cnh , Dnv, Cnv,
Dnd , Dnh . Moreover, Q may be any real number (to achieve uniqueness of CQ , we assume
Q � 1). Obviously, only for Q = q/r rational (for r and q co-primes), TQ( f ) = T r

q ( f ) con-
tains pure translations for f q , while the translations in the glide plane by 2 f are always present.

It is textbook knowledge that ZP
def= {zp|z ∈ Z, p ∈ P } is a group if and only if Z and P

commute, i.e. if, for each z and p, there are z ′ and p′ such that zp = p′z′. When applied to line
groups, this compatibility condition gives altogether 13 different infinite families [11], some of
them having several factorizations. The symmetry of incommensurate structures is described by
the first and the fifth family line groups, TQ( f )Cn and TQ( f )Dn, for Q irrational. All other
line group families refer exclusively to translationally periodic (i.e. commensurate) systems,
and have one of the following forms: T ( f )Pn (symmorphic families 2, 3, 6, 9 and 11, where
T ( f ) is a pure translational group), T 1

2n( f )Pn (zig-zag families 4, 8 and 13), and Tc( f )Pn

(families 7, 10, 12 and, as alternative factorizations, 6, 8, 11 and 13).
In the context of this paper, it is important to stress that each line group L has a maximal

subgroup that belongs to the first line group family L(1). Such a subgroup consists of all
the roto-helical transformations (combinations of the rotations around the principle axis and
translations) (CQ | f )t Cs

n of the group L. The index of the subgroup L(1), i.e. |L|/|L(1)|, is
two (four) for line groups from the families 2–8 (9–13). The remaining elements combine
roto-helical transformations with vertical mirror or glide planes, horizontal mirror or roto-
refractional planes, and U axes (rotation for π around the axis in the xy-plane). Obviously,
L(1) = L if and only if L is a first family line group.

The presence of the non-trivial rotational factor Cn (n > 1) in the first family (sub)group
clearly introduces non-uniqueness of the helical factor TQ′( f ). Namely, all the products
TQs ( f )Cn generated by Cn and Zs = (CQ′ | f )Cs

n = (CQs | f ) with Qs = Q′n/(Q′s + n)

(s = 0, . . . , n − 1) give the same group L(1). Therefore, uniqueness can only be achieved by
a convention (figure 1): let Q denote the greatest finite value among Qs , which is (by [x] and
{x}, we denote integral and fractional parts of x):

Q =





Q′ if n � Q′,
nQ′

n + Q′ + Q′[− n
Q′ ] if n � Q′. (1)
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Figure 1. First family line group T r
q ( f )Cn (for r = 1, n = 3 and q = Q = 12). Each atom

represents a unique element of the group mapping A to this atom; generators Z and Cn are depicted
by arrows. Different helices are generated by the transformations Zs = ZCs

n ; the convention (1)
singles out Z0 = Z = (CQ | f ) (thick helix) with the greatest slope. As the group is commensurate,
its period a = q̃ f (q̃ = 4) is depicted.

In particular, for the commensurate line groups, this means that, instead of Q′ = q ′/r ′, we can
use Qs = q/(r0 + sq̃) (s = 0, . . . , n − 1), and

Q = q

r
, with: q = LCM(q ′, n) = nq̃, r = q

n

{
r ′n
q ′

}

. (2)

Clearly, (Cr
q | f )t Cs

n = (Crt+sq̃
q |t f ) is, for s = −r and t = q̃ , the least pure translation;

consequently, the translational period of T r
q ( f )Cn is:

a = q̃ f. (3)

For example, the group combining pure translations (therefore f = a) T (a) = T 0
1 (a) with

rotations Cn is, by this convention, T (a)Cn = T 1
n (a)Cn (i.e. r = 1, as r = 0 gives infinite

Q). Note that, besides the U -axis, giving the fifth family group with any roto-helical subgroup,
all other symmetries are compatible only with achiral (translational and zig-zag) roto-helical
groups: L(1) = T (a)Cn (families 2, 3, 6, 7, and 9–12) and L(1) = T 1

2n(a/2)Cn (families 4, 8
and 13).

3. Roto-helical transformations of a cylindrical rectangular lattice

Let us consider a two-dimensional rectangular lattice with primitive vectors A1 and A2 along
the x- and y-axes, respectively. Apart from translational symmetry, there may also be other
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Figure 2. Rectangular layer with A1/A2 = √
3. The chiral vector c of the nanotube (3, 3) (depicted

in figure 1), together with the corresponding chiral angle θ = π/6, reduced chiral vector c̃ = (1, 1)

and the grey lines containing ending points of the lattice vectors z±
i (z+

s corresponds to the line
group transformations Zs , figure 1), are given. This tube is commensurate (as all tubes rolled
up from this lattice, since A2

1/A2
2 = 3 is rational) with the roto-helical line group T 1

12(
3
2 A2)Cn .

The vectors a = (−1, 3) and z = (0, 1) correspond to the translational period and to the helical
generator (C1

12| 3
2 A2).

symmetries determined by the arrangement of the atoms within a unit cell. These additional
symmetries are mirror and glide planes, the U -axis, and the non-trivial principle axis which is
two-fold, except in the case of the square lattice (A1 = A2) where it can be of order four.

Now, let us define the chiral vector as c = (n1, n2) = n1A1 + n2A2. It is biuniquely
determined by its length c and slope, i.e. the chiral angle θ (figure 2):

c =
√

n2
1 A2

1 + n2
2 A2

2, sin θ = n2 A2

c
. (4)

The nanotube (n1, n2) is obtained by folding the layer in a way that the chiral vector becomes
a circumference of the tube. Since the tubes characterized by the chiral vectors c and −c
are identical (only mutually rotated for π ), it is sufficient to consider the tubes with n2 � 0,
i.e. 0 � θ < π . However, the tubes with equal length chiral vectors, but with the chiral angles
θ and π − θ , are enantiomers. Therefore, taking the right enantiomer only, we may restrict θ

to the interval [0, π/2]. It is convenient to single out two special types of tubes: Xn = (n, 0)

and Yn = (0, n), i.e. those with chiral angles θ = 0 and π/2.
The folding changes the symmetry: translations of a two-dimensional rectangular lattice

become roto-helical transformations of a cylindrical web [12, 10]. To demonstrate this, we
introduce the reduced chiral vector c̃ as the minimal vector that is collinear with the chiral
vector c: i.e. c̃ = c/n = ñ1A1 + ñ2A2, where

n = GCD(n1, n2). (5)

Hence, ñ1 and ñ2 are co-primes and translation for the reduced chiral vector c̃ becomes a
minimal rotation around the nanotube axis. Such n successive rotations make a full circle,
showing that the nanotube’s pure rotational axis is of order n, or, in other words, that Cn is the
maximal rotational subgroup of the point group factor of L.

Translations of the layer are generated by the reduced chiral vector c̃ and any other
vector z = z1A1 + z2A2, satisfying the condition |c̃ × z| = A1 A2. Diophantine equations
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ñ2z1 − ñ1z2 = ±1 in z essentially underlie such a condition. Also, there are two families of
solutions to the Diophantine equations:

z±
i = (z±

1i , z±
2i ) = ∓z0 ± i(ñ1, ñ2), z0 =






(0, 1) if c = (n, 0),

(−1, 0) if c = (0, n),
(

ñϕ(ñ1)−1
2 ,

ñϕ(ñ1)

2 − 1

ñ1

)

otherwise,

(6)

where ϕ(x) is the Euler function giving the number of co-primes with x that are less than x .
For the co-primes x and y, the Euler theorem yields yϕ(x) = 1 + J x for a uniquely defined
integer J = (yϕ(x) −1)/x , i.e. x{yϕ(x)/x} = 1, meaning that yϕ(x)−1 is the inverse of y modulo
x (i.e. it is the least natural number which, when multiplied by y, has the form 1 + J x ; thus, it
can also be denoted as y−1

(x) ).
Obviously, the solutions are distributed on the lines (figure 2) parallel with to chiral

direction c at the distance f = A1 A2/c̃, i.e.

f = A1
√

ñ2
1

A2
1

A2
2
+ ñ2

2

. (7)

The lattice translations z±
i become screw axes generators (CQ | f ) on the tube which, when

combined with Cn , give roto-helical group. (This is a manifestation of the aforementioned
non-uniqueness.)

The opposite solutions, z+
i and z−

i (z+
i = −z−

i ), give mutually inverse transformations
on the tube, thus generating the same helical group. In order to get the helical generator
with f positive, one should choose a solution z = z−

i , and, to accommodate the previous
convention (1), it should be the closest to the perpendicular line to c, but not on it.

Evidently, f is a fractional translation of the screw axis generator. To find Q, we note that,
as c is the circumference of the tube (thus corresponding to the rotation for 2π ), the length of
the projection of z onto c corresponds to the rotation for 2π/Q. Therefore, Q = c2/c · z and:

Q = n
ñ2

1
A2

1

A2
2
+ ñ2

2

ñ1z1
A2

1

A2
2
+ ñ2z2

. (8)

Note that for Xn and Yn we get (for z = z−
i ) rational number Q = n/ i , which (after applying

convention (2) for q ′ = n, and r ′ = i ) gives a purely translational Z with f = a (being equal
to A2 and A1, respectively), i.e. L(1) = T 1

n (a)Cn.
Hence, the derivation of the first family subgroup of the line group of the tube (n1, n2) is

now completed: translations of the layer are on the tube transformed into the line group

L(1) = TQ( f )Cn, (9)

with group parameters given by equations (5), (7) and (8). Note that f and Q/n depend only on
the reduced chiral vector c̃, i.e. they characterize the ray of the tubes n(ñ1, ñ2) (being defined
by the fixed co-primes ñ1 and ñ2).

To conclude, independently of the layer structure, the roto-helical part of the nanotube
symmetry is L(1), while the arrangement of the atoms within an elementary cell may give rise
to the additional symmetries of the nanotubes. The latter will be analysed after a discussion on
the commensurability of the tubes obtained.
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4. Commensurability

Unlike the hexagonal case, rolling up a rectangular lattice may give an incommensurate
structure. The commensurability condition is equivalent to the rationality of Q. Namely, as in
equation (8), all the terms beside Q and A2

1/A2
2 are integers; Q is rational if A2

1/A2
2 is a rational

number. Conversely, if the denominator in (8) does not vanish, A2
1/A2

2 may be expressed in
terms of Q as A2

1/A2
2 = (nñ2

1 − ñ2z2 Q)/(ñ1z1 Q − nñ2
1), showing that rationality of Q is also

a necessary condition, except for tubes of the types Xn and Yn (which are, as has already been
pointed out, always commensurate). It is of practical and conceptual importance to stress that
when A2

1/A2
2 is rational (i.e. when there are co-primes α1 and α2 such that A2

1/A2
2 = α1/α2)

all the rolled-up tubes (n1, n2) are commensurate, since Q = q ′/r ′ is rational. The group
parameters are easily found from the equations given in the previous section and by applying
the conventions that have been introduced (2).

In the commensurate case, the translational period and helicity parameter r can be
calculated directly as follows. Obviously, pure translations on the tube correspond to the two-
dimensional (2D) lattice vectors which are perpendicular to the chiral vector. The minimum
among such vectors is a = a1A1 + a2A2, where a1 and a2 are co-primes such that the

length a =
√

a2
1 A2

1 + a2
2 A2

2 is the tube period (3), and it satisfies the orthogonality condition

c̃ · a = ñ1a1α1 + ñ2a2α2 = 0. These conditions give a = − ñ2α2
α

A1 + ñ1α1
α

A2, a =
1
α

√

ñ2
1α

2
1 A2

2 + ñ2
2α

2
2 A2

1. Thus, from equations (3) and (7) one can easily find the translational
period a:

q̃ = a/ f = ñ2
1α1 + ñ2

2α2

α
, q = n

ñ2
1α1 + ñ2

2α2

α
, (10)

a = A2

√
α1

α
q̃ = A1

√
α2

α
q̃. (11)

In order to find r , we note that the lattice vector z, related to the screw axis generator
(Cr

q | 1
q̃ a), is of the form z = 1

q̃ a + r
q̃ c̃, where the first term corresponds to the fractional

translation f along the tube, and the second term corresponds to the rotational part Cr
q . Using

the previously found expression for a, we get z = (rñ1−ñ2
α2
α

)a1+(rñ2+ñ1
α1
α

)a2

q̃ . As z is a lattice
vector, its coordinates are integers. Hence, for the first coordinate we have r ñ1 = ñ2

α2
α

+ i q̃.
Dividing both sides by β1 = GCD(ñ1, q̃), one gets

r = ñ2α2

β1α
x + i

q̃

β1
, x =

(
ñ1

β1

)−1

(q̃/β1)

(12)

(see the comment below equation (6)). To find i , we use the condition that the second coordinate
of z is also integer: division by β2 = GCD(ñ2, q̃) gives r ñ2

β2
+ñ1

α1
β2α

= j q̃
β2

; when r from (12) is

substituted, it reads ñ2
2α2

αβ1β2
x+i q̃

β1

ñ2
β2

+ñ1
α1
β2α

= j q̃
β2

. According to (10) ñ2
2α2 = q̃α−ñ2

1α1, we get

q̃α

αβ1β2
x − ñ1α1

αβ2

(
ñ1

β1
x

)

+ i
q̃

β1

ñ2

β2
+ ñ1

α1

β2α
= j

q̃

β2
.

Now we substitute the bracket using the integer X = (x ñ1
β1

− 1)β1/q̃; after cancelations, we

divide both sides by q̃
β1β2

to obtain the equation i ñ2 = ( ñ1α1
α

X − x) + jβ1. Finally, using its

solutions i = ( ñ1α1
α

X − x)ñ−1
2(β1)

+ jβ1 in (12), we get the complete series:

r j = r + j q̃, r = q̃

{
ñ2α2

β1αq̃
x +

(
ñ1α1

α
X − x

) ñ−1
2(β1 )

β1

}

, (13)

where r is the solution matching the conventions that have been introduced.
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5. Additional symmetry elements

Besides, under the translations, the layer may be invariant under the C2 rotations and, for the
square lattice, also under the C4 rotations. In such a case, the tubes become invariant under the
horizontal two-fold axis (the U -axis) and the symmetry is described by a fifth family line group
TQ( f )Dn . Its roto-helical group is an index-two subgroup, and the U -axis is the remaining
coset representative.

As emphasized at the end of the section 2, the additional symmetries may be combined
only with the achiral roto-helical subgroups T 1

n (a)Cn and T 1
2n(a/2)Cn (i.e. when q̃ =

1, 2), referring only to the commensurate tubes. In particular, we showed that q̃ = 1
characterizes the tube types Xn and Yn only. Thus, in the q̃ = 2 case, none of the reduced

chiral vector coordinates vanish (otherwise q̃ = 1), implying that ñ2
1

GCD(ñ1,α2)

α1
GCD(ñ2,α1)

and
ñ2

2
GCD(ñ2,α1)

α2
GCD(ñ1,α2)

in equation (10) must be equal to 1. A simple analysis shows that this
is possible only if α1 = α2 = |ñ1| = ñ2, i.e. in the case of a square lattice and diagonal chiral
vectors c = n(1, 1) and c = n(−1, 1).

Hence, for the achiral tubes, vertical mirror planes (glide planes) of the layer, when
perpendicular to the chiral vector, give vertical mirror planes (glide planes) of the tube.
When parallel to the chiral vector, the vertical mirror plane becomes the horizontal mirror
plane of the tube, while the vertical glide plane becomes the roto-refractional axis S2n of the
tube. Therefore, in the special case of achiral tubes, the additional 2D lattice symmetries
can be combined and, this way, all the line group families may be obtained, as shown in
figure 3.

6. Discussion

Full symmetry of all the possible NTs with underlying rectangular lattices is found and
described by the line groups. It is shown that these NTs may not have translational symmetry,
in contrast to the NTs obtained by rolling up a layer with a hexagonal lattice. Translationally
periodic (without helical symmetry tubes) Xn and Yn can be obtained from any rectangular
lattice, while the commensurate tubes with non-trivial helical symmetry can be obtained only if

the square of the lattice period ratio is rational. In this case, the chiral angle is sin θ = ñ2

√
α2
αq̃ .

It is interesting to note that to each (of infinitely many) line groups corresponds a set of rolled-
up rectangular lattice nanotubes.

Let us stress that the general results that are presented enable straightforward derivation of
the symmetry (and its physical consequences) of the increasing number of reported nanotubes
with rectangular lattices, such as ZnO seamless nanorings [5], carbon pentahaptite [6] and
boron [8] nanotubes. Simply substituting the parameters of the lattice and the chiral indices
n1 and n2, we get all the group parameters of the first family subgroup using the expressions
presented; the possible additional symmetries of the layer are then easily included if preserved
in the folded configuration.

There are various physical consequences of the line group symmetry. It automatically
singles out helical quasi-momentum k̃ and angular momentum [14, 12] as the conserved
quantum numbers of all the nanotubes; when the U -axis and mirror planes are present, there
are also the corresponding parities. However, the more familiar linear quasi-momentum k
is applicable only to the commensurate tubes. Thus, for incommensurate nanotubes the
energy bands are given as the functions E(k̃) over the helical Brillouin zone (−π/ f, π/ f ],
while for the commensurate tubes the usual Brillouin zone is also applicable. Analogously,
straightforwardly generalizing the Bloch theorem, we conclude that the eigenstates of the
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Figure 3. Top: nanotube (30, 0), being commensurate irrespective of A2
1/A2

2, with the first family
subgroup T ( f )C30, f = a = A2, and reduced chiral vector c̃ = (1, 0). Depending on the
arrangements of the atoms in the elementary cell of the layer, ten different families of line groups
(given below each illustration) may be realized by combining different point factors with a purely
translational group (Z = T ) or glide plane group (Z = Tc; dashed line). Possible additional
symmetry elements are mirror planes (solid lines), roto-refractional axes (dashed line), and U -axes
(crosses). Middle: nanotube (30, 30) of the square lattice layer (A1 = A2). Its first family subgroup
is T 1

60( f )C30. (It may be enlarged for some particular atomic arrangements.) Bottom: nanotubes
(30, 30) folded from the layers with A2

1/A2
2 = π2/3 ≈ 3 and A2

1/A2
2 = 3. The corresponding line

groups are T 30+10π2

10+3π2
(

√
3π2

3+π2 )C30 and T120(A1/2)C30. In the first case (left panel), the vertical line

passes solely through the origin of the bottom unit cell, emphasizing the incommensurability of the
tube. As for the additional symmetry elements, the U -axis is the single possibility in both cases.

incommensurate nanotubes are characterized by the helical momentum k̃. One direct
consequence is the appearance of the chiral (i.e. helical) currents in such nanotubes [12, 8].
The energy band degeneracies match the dimensions of the irreducible representations of the
line groups, which is 1 and 2, and for commensurate groups with mirror planes this may also
be 4.
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[12] Damnjanović M, Milošević I, Vuković T and Sredanović R 1999 J. Phys. A: Math. Gen. 32 4097
[13] Kopsky V and Litvin D (ed) 2003 International Tables for Crystallography vol E Subperiodic Groups (Dordrecht:

Kluwer)
[14] White C T, Robertson D H and Mintmire J W 1993 Phys. Rev. B 47 5485

http://dx.doi.org/10.1038/354056a0
http://dx.doi.org/10.1021/cm9802189
http://dx.doi.org/10.1103/PhysRevB.51.11229
http://dx.doi.org/10.1021/ja00114a031
http://dx.doi.org/10.1007/s003390050039
http://dx.doi.org/10.1063/1.1499512
http://dx.doi.org/10.1002/1521-4095(20020219)14:4<309::AID-ADMA309>3.0.CO;2-Q
http://dx.doi.org/10.1088/0953-8984/16/25/R01
http://dx.doi.org/10.1126/science.1092356
http://dx.doi.org/10.1088/0953-8984/18/6/010
http://dx.doi.org/10.1103/PhysRevLett.84.1716
http://dx.doi.org/10.1103/PhysRevB.53.R13303
http://dx.doi.org/10.1103/PhysRevLett.79.2093
http://dx.doi.org/10.1021/ci000010j
http://arxiv.org/abs/cond-mat/0509455
http://dx.doi.org/10.1103/PhysRevB.50.4976
http://dx.doi.org/10.1107/S0108767300018857
http://dx.doi.org/10.1103/PhysRevB.47.7805
http://dx.doi.org/10.1088/0305-4470/32/22/310
http://dx.doi.org/10.1103/PhysRevB.47.5485

	1. Introduction
	2. Essentials of line groups
	3. Roto-helical transformations of a cylindrical rectangular lattice
	4. Commensurability
	5. Additional symmetry elements
	6. Discussion
	Acknowledgments
	References

